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in an atmospheric boundary layer 
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Derivatives of velocity signals obtained in a turbulent boundary layer are ex- 
amined for correspondence to the lognormal distribution. It is found that there 
is rough agreement but that unlikely events at  high values are much less common 
in the observed fields than would be inferred from the lognormal distribution. 
The actual distributions correspond more to those obtained from a random walk 
with a limited number of steps, so the difference between these distributions and 
the lognormal may be related to the fact that the Reynolds number is finite. 

The third-order structure function is examined, and found to be roughly con- 
sistent with the existence of an inertial subrange of a Kolmogoroff equilibrium 
regime over a range of scale which is a priori reasonable but which is far less 
extensive than the -: region of the spectrum. 

Introduction 

usual notation. as 
The local dissipation rate per unit mass in a turbulent field is defined, in the 

Because of the number of terms in the expression this quantity is very difficult 
to measure experimentally. For this reason information about it is usually in- 
ferred by observing some other quantity which there is reason to believe behaves 
in a similar manner. The quantity usually used is some sort of short term average 
of a velocity derivative such as 

It has been noted for some time that these quantities and others like them, when 
averaged over a suitably small volume, are random variables with distribution.. 
which are decidedly non-Gaussian. In particular, they are characterized by a 
high coefficient of excess. 

Shortly after the development of the similarity theories of Kolmogorov (1941) 
and Oboukhov (1941 u )  it was pointed out by Landau that the variation of ecaused 
some difficulty. Subsequently Kolmogorov (1962) and Oboukov (1962) modified 
their theories to take this factor into account. The modifications involved 
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the assumption that the logarithm of E was a normally distributed quantity, 
although no theoretical evidence for this assumed behaviour was presented 
at  the time. Still later Novikov & Stewart (1964) considered a model of the 
turbulence based purely on the experimentally observed nature of the dissipation 
rate. By subdividing space into a series of smaller and smaller volumes and 
assuming that for each stage of subdivision random volumes had either zero 
dissipation or some constant dissipation they were able to predict that the 
spectrum of the fluctuations of E would exhibit a power law behaviour with the 
parameter between 0 and - 1.  Some measurements of quantities which should 
have behaved like E were made by Pond (1965) and seemed to bear this out. 

The latest contribution to the theory of the spatial and time variation of B 

has been offered by Gurvich & Yaglom (1967). Their paper presents a theoretical 
treatment leading to the predictions that certain quantities, including the dis- 
sipation rate, should have the logarithmic-normal probability distribution and 
that the spectrum of the square of these quantities should have a power law 
behaviour. 

The present paper is an account of some of the results of an experiment under- 
taken to test the validity of the lognormal theory. Some other results concerning 
the structure functions and the higher moments of the velocity derivatives have 
been included. 

Data 
Observational data for velocity fluctuations were collected in the atmospheric 

boundary layer over the ocean, using a Disa constant temperature hot wire 
anemometer. Wire diameter was 514 and length 1 mm, permitting good measure- 
ments down to scale sizes of less than 0.5 cm. The probe was mounted at  heights 
of 1.5 to 2 metres above the water and the measurenients were made in various 
mean wind speeds ranging from 4 to 8 m/sec. The velocity signal was differenti- 
ated by analogue means and recorded as an FM signal a t  7qin.lsec on an Ampex 
FR-1300 tape recorder. 

Care was taken to maintain the wave form of the signal in order to obtain the 
true distribution. The filters used to remove high frequency noise prior to dif- 
ferentiation were chosen to have a phase shift linear with frequency over the 
band of interest. The total phase shift of the circuit was measured to be within 
one or two degrees of linear in the band 0 to 2000Hz. 

Analysis of the data was accomplished through the use of a 10 bit analogue 
to digital converter. The signal was filtered with the linear phase shift filter 
to minimize aliasing and digitized at  a rate to provide spectrum information 
out to the highest frequencies for which the recorded signal was discernible from 
the noise. Considerable care was taken in recording, reproducing and digitizing 
to ensure that no clipping occurred. The extreme peak-to-peak excursions of 
the signal occupied less than two-thirds of the dynamic range of all instruments 
used. 

Figure 1 shows a typical spectrum of the differentiated velocity. The filter 
used in both recording and digitizing had a 3 db point at  2000 Hz. The 3 db point 
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of the F M  system of the tape recorder was above 2500Hz. Therefore, only the 
last 3 or 4 points of the spectrum shown in figure 1 are significantly affected by 
the filters, indicating that the signal is relatively noise free and that nearly all 
the dissipation range has been included. 

- 9.0 1 I I I I I I 
0.0 0.5 1 .o 1.5 2.0 2.5 3.0 3.5 

Log frequency 

FIGURE 1. Spectrum of the differentiated downstream velocity fluctuations. Mean wind 
was 8.3 m/sec. 

Results 
In  the following presentation of the results the probability density functions 

have been constructed for the logarithm of the absolute value of the differen- 
tiated downstream velocity fluctuations. The predictions of Gurvich & Yaglom 
are in terms of the logarithm of the square of this quantity. It can easily be shown, 
however, that if a quantity has a logarithmic-normal distribution its positive 
square root also has a lognormal distribution. Use of the absolute value allowed 
a more direct comparison of the observed and theoretical even moments of the 
signal. 

Figure 2 shows a typical observed probability density function of this log- 
arithm. The bar graph represents the observed data. The smooth curve is the 
best fit of a curve of the normal type to points located in the centre of each bar. 
In  forming the distributions the mean of the differentiated signal was chosen as 
its zero; its positive and negative sides were then treated separately for simplicity 
in the analysis. Figure 2 shows the negative side of the signal. The positive side 
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is qualitatively identical. From the results of the separate cases it could later 
be seen that increasing the sophistication of the computation to produce a 
distribution of the total signal would not affect significantly the nature of the 
departure of the results from the theoretical prediction. 
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FIGURE 4. Spectrum of the square of the differentiated downstream velocity fluctuations. 
The vertical arrow represents the peak of the dissipation spectrum. 

Coefficient of 
Section Skewness excess-f Time (see) 

1 - 0.69 13.1 240 
2 - 0.71 12.3 240 
3 - 0.56 9.3 120 
4 - 0.76 17.9 90 
5 - 0.71 16.6 120 
6 - 0.56 10.6 515 

TABLE 1. Differentiated velocity 

-f I n  previous publications from this Institute we have used the word ‘kurtosis’ for 
‘ coefficient of excess ’. Because ‘kurtosis’ has a t  least three definitions in reputable literature 
we suggest that the word be avoided and that henceforth ‘coefficient of excess ’ be used for: 

e4/(e2))”/- 3 

and that the term ‘flatness factor’, which has a long and respectable history in the tur- 
bulence literature be used for s/(2)2. 

- -  

1 0  F L M  41 
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Figure 3 is the corresponding arithmetic probability plot for the same data. 
The straight line on this plot corresponds to the normal distribution computed 
in the least squares fit of figure 2. 

Table 1 shows the values obtained for skewness and kurtosis for each section 
of differentiated velocity data analyzed. The length in seconds of each section 
is also given. Figure 2 corresponds to section 6 of the velocity data. 

These differentiated velocity data can also be used t o  determine the spectral 
behaviour of the quantities related to e. 

Figure 4 is the spectrum of the square of the downstream differentiated velocity 
fluctuations. The straight line has a slope of - 0.65. 
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Structure functions 
The undifferentiated velocity signals were also recorded during the observa- 

tional period. A calculation of structure functions from these signals permits the 
values of skewnees and coefficient of excess of the derivative to be put into a 
broader context. They are also of some intcrest in themselves. Taylor’s hypo- 
tlicsis was assumed in computing the two-point downstream velocity differences. 

The normalized third-order structure function (skewness) is given by 

(PI 
[(Pl- #4)218. 

The normalized fourth-order structure function (flatness factor) is given by 
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Figures 5 and 6 show typical results (for section 1 of the data) for the normalized 
third- and fourth-order structure functions as a function of logarithm of separa- 
tion. 

Discussion 
As can be seen from figure 2 the logarithmic-normal distribution describes 

the derivative of velocity reasonably well. There, is, however, a significant 
deviation from the form particularly for very small and very large values. The 
observed logarithms represented by the bar graph in figure 2 have a skewness of 
- 0.49 and a coefficient of excess of 0.02, 

-3.0 -2.0 -1.0 0.0 1 .o 2.0 3.0 
Signal amplitude 

FIGURE 7. Two sided probability density function for a 
logarithmic-normally distributed variable. 

The excess of small values is not unexpected due to the nature of this dis- 
tribution. Figure 7 is an example of a theoretical logarithmic-normal distribution 
with parameters very nearly equal to typical observed values. The distribution 
shows small values of the probability in the neighbourhood of zero and the largest 
values of probability for very nearby values. The electronic noise associated with 
the tape recorder alone is of the order of the separation between the peak of the 
distribution and zero. Therefore, we would expect the noise adding independently 
to the signal to tend to fill in the gap about zero and produce an excess of 
small values. Figure 8 shows the theoretical result of adding independently a 
logarithmic-normally distributed quantity very similar to those experimentally 
obtained and a normally distributed quantity similar to the circuit noise. It 
can be seen that the effect of noise ‘penetrates’ to values of In x equal to about 
- 2.5, and can in no way account for all of the difference from lognormal seen 
in figures 2 and 3. 

10-2 
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This may account for the behaviour at small values, but it in no way accounts 
for the observed deficiency of large values. Another 'explanation' may be 
suggested for this region: 

The argument advanced by Gurvich & Yaglom for the existence of the 
logarithmic-normal distribution is based on a subdivision of space into smaller 
and smaller volumes, one located inside the other. The ratio of the dissip a t' ion 
in a volume to that in the immediately larger volume in which it is located is 
then examined as a statistical variable. 

In x 

FIGURE 8. Effect of a small Gaussian noise adding independently t o  a lognormal1,y dis- 
tributed variable. The smooth curve is the best least-squares normal curve for comparison. 

If a j  is the ratio of the average of c in a volume of the j subdivision to the 
average of c in the j-1 subdivision and if there are n stages of subdivision then 

and 

I f  the Reynolds number is high enough so that n is a large enough number and 
if the log aj are independent and are assumed to have finite means and variances 
then the central limit theorem is applicable and log < should tend towards the 
normal distribution. I f  the Reynolds number and therefore n is not high enough, 
we might expect a deficiency of large values to occur because of the limit on how 
large log< can become. For small values of n the distribution will tend to 
approach that of ai. If this distribution is also lognormal then of course the 
overall distribution will be lognormal regardless of n. However, there is no 
reason to expect this to be the case, and the internal evidence is against it. 

To test this idea a series of random numbers was generated and multiplied 
together on a computer. For the reasons given above the logarithm of this 



Small scale turbulence in an  atmospheric boundary layer 149 

product could be expected to have a distribution which would approach normal 
as the number of random numbers used increased. Some insight into the effect 
of a small Reynolds number could then be obtained by limiting the number of 
random numbers in the product. The probability density function from which 
the numbers were drawn was defined by: 

P(x)  = 0 (x<x,); 

P(x)  = l/(xb-x,) (x, < x < xb); 
P(x)  = 0 (x > x*). 

x, and xb were chosen so that the first two moments of the resulting distribu- 
tion of the product of the numbers corresponded closely to the experimental 
distributions. 

0'48[ 0.40 

In x 

FIGURE 9. Distribution of the product of ten random numbers. The smooth curve is the 
best least squares normal curve for comparison. 

Figure 9 shows one such distribution for a product of 10 random numbers. The 
deficiency of large numbers is evident. It would seem that a not-large-enough 
Reynolds number could account for the observed results. There are simply not 
enough steps in the ' cascade '. 

The most serious difficulties with the theory arise when trying to predict rare 
events or any of the higher moments from the lognormal model. If y is a log- 
normally distributed variable then the probability density function is given by 

- 

where m = lny 

and 
~- 

~2 = (In y)2 - (In 
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The pth moment of this distribution is 

@lJ = ypP(y) dy = exp (pm + & p W ) .  
/om 

~~~ 

Given m and cr one can therefore predict all moments of the variable y. The 
coefficient of excess of y will be given by 

- 
where pa = @-I@ 

and p4 = ,4 - 45 36 + 6@@- 3G4. 

Table 2 shows a comparison of the first four moments and the coefficient of 
excess prcdicted by the above relations with those calculated directly from the 
signal. The data is that used in preparing figure 2. Note the enormous values of 
coefficient of excess predicted by fitting a normal distribution to the logarithm 
of the observed numbers. The observed values of the coefficient of excess are 
much smaller (although still very large compared with those fi-om most stochastic 
data). 

Predicted froin log- 
Moment normal model manner 

Calcirlated in normal 

1 0.36 0.29 
2 0.41 0.20 
3 1.46 0.25 
4 16.G 0.47 

Coefficient of 156 10.6 
excess 

TABLE 2. Velocity derivative 

Kolmogorov similarity theory calls for the skewness of the vclocity derivative, 
shown in table 1, to be an absolute constant-but there is no theory (so f. m as 
the authors are aware) predicting its value and no other high Reynolds number 
data with which to compare it,  

There is a direct relation connccting the skewness of the velocity difference a t  
two points separated by a distance r with the Kolmogorov constant K’ of the 
‘ -$’ rcgion of a one-dimensional downstream velocity spectrum. The relation is 

S ( Y )  = 0.100(K’)-% 

The condition that this relation holds is that the separation r’ is small cnough 
that the turbulence is locally isotropic and large enough that viscosity is unim 
portant. If these lower and upper limits arc taken as the peak of the  dissipation 
spectrum and one-tenth the distance of the probe above the water respectively, 
it can be seen from figure 5 that the value of X ( r )  is close to 0.26. This can be 
compared with values of 0-31 calculated from K‘ by Pond et al. (1966) and 0.39 
and 0.36 reported by Stewart (1963) as a correction t o  some values measured by 
Curvich (1960). The value of 0-26 corresponds to a Kolmogorov constant K’ 
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of 0.53, which is somewhat higher than what is presently thought to be the 
proper value. 

It should be noted that the third-order structure function falls well below 
even this value for separations greater than about 10 cm-although the - 5 
regime of the spectrum extends to scales of several metres. This is further 
evidence that the - p spectrum a t  large scales is not related to any Kolmogorov 
inertial subrange. 

The quantity (ul - u ; ) ~  is, for small separations, a property of the sniall scale 
turbulence to which the argument of Gurvich & Yaglom (1967) can be applied. 
For small separations Iul - u;l should therefore be a lognormally distributed 
quantity, it should exhibit the property of ‘intermittency’ and it should have 
a significant coefficient of excess. Thus the flatness factor of figure 6 could be 
interpreted as some sort of measure of the development of the intermittency 
as a function of scale size. The behaviour displayed is much as would have been 
expected from this interpretation. The flatness factor increases steadily with 
decreasing separation. In order to reach the values displayed by the derivative 
(to - 0-69 for skewness and 16 for flatness factor) both skewness and flatness 
factor must increase greatly between separations corresponding to two digitiza- 
tion intervals-about 2 mm-and the zero separation of the differentiation. At 
the largest separation used here it is still significantly greater than the Gaussian 
value of 3. 

The one or two points representing the smallest separations in figures 5 and 6 
are unreliable; for these the differences in velocity were smaller than the noise 
associat,ed with the electronics leading t o  inaccurate distributions. 

The spectrum of the square of the downstream velocity derivative in figure 4 
shows the predicted power law behaviour over the range of frequencies below the 
peak of the dissipation spectrum. The slope of the line is -0.65. This can be 
compared with the values of - 0.62 reported by Pond et al. (1963) and - 0-6 
by Gurvich & Zubkovski (1963). 

All of these measurements were in atmospheric boundary layers. There is no 
real theory to predict the value of this power, only indications that there should 
be some power law. It would be useful to have some measurements in a different 
type of turbulent field-say a high Reynolds number jet-in order to see whether 
or not there is some form of universal behaviour of this aspect of turbulent fields. 

Conclusions 
The lognormal model, while generally describing the distribution of the down- 

stream velocity derivatives in the atmospheric boundary layer, is not sufficiently 
accurate to permit estimation of probabilities for larger values or to permit 
calculation of any properties from the predicted higher moments. The skewness 
of the downstream velocity structure function appears to be slightly smaller 
than indicated by previous data over a scale range in which a locally isotropic 
behaviour is ccpriori likely. For the larger scales, where the -:law is inexplicably 
observed to persist in the downwind velocity spectrum, the skewness becomes 
much smaller. The flatness factor behaves a t  least qualitatively as would be 
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expected. The square of the downstream velocity derivative exhibits the pre- 
dicted power law behaviour with a value of the slope in good agreement with that 
reported by others. 

Most of the data presented here was recorded by Mr F. E. Jerome and Mr J. A. 
Elliott of the Institute of Oceanography of the University of British Columbia 
in the course of work with other objectives. The authors wish to express their 
gratitude. One of us (J. R.W.) was on educational leave from t,he Marine Sciences 
Branch of the Federal Department of Energy, Mines and Resources during the 
course of the work reported here. This work was supported in part by the National 
Research Couiicil of Canada, the Defence Research Board of Canada and the 
Meteorological Branch of the Department of Transport. 

Note 

When this paper was originally presented it included a discussion of some 
temperature fluctuation data which unfortunately were rather severely con- 
taminated by noise. We have since obtained some much ‘cleaner’ data which 
are now being analyzed. While we have as yet seen no reason to modify any of 
the conclusions reached on the basis of the earlier, poorer data, we consider it 
advisable to hold back publication of these conclusions until they can be better 
documented using the new data. 
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